NOTE: Tests must be carried out after the installation, alteration or repair and before putting back to service.

SAFETY: At all times maintain suitable clearance to all other electrical equipment and verify planned escape routes.
In preparation for the tests, wherever possible, disconnect the cables from the equipment on both sides and make the area safe.

DATE: Project No. Name of Officer

Transformer Location:

1. TRANSFORMER DESCRIPTION

<table>
<thead>
<tr>
<th>Rated Voltages</th>
<th>kV</th>
<th>V</th>
<th>Rated kVA</th>
<th>kVA</th>
<th>Stock code</th>
<th>Serial Number</th>
</tr>
</thead>
</table>

2. VISUAL INSPECTION AND SAFETY CHECK

Inspect the following:
- Rating plate
- Tank and bushings
- Tap setting
- Oil level
- HV terminations
- LV terminations
- Neutral connection
- MEN/N-E connections

1. Check that the installation complies with the distribution construction standards and applicable design drawings (especially correct orientation as per DSM 3).
2. Check that Public Safety has been considered (e.g. trip hazards removed, anti-climbing devices applied where applicable).
3. Check the supply to the transformer, that it is switched off and isolated as per switching sheet and permit.
4. Confirm (with approved testing device) that the transformer is de-energised.
5. Ensure that the earth system is complete, undamaged and bonded to earth points.
6. Check that the nearest conductive material is at least two (2) metres away from the earth ring/system (take a photo if possible) Measured distance m
7. Transformer voltage rating matches system voltage.
8. Transformer tap is at the position of previously installed transformer or per network planning requirements.
9. Transformer oil level is satisfactory (if visible).
10. Transformer tank and bushings in good condition (no oil leaks).
11. Check the neutral cable is connected to the neutral bar, the earth cable to the earth bar, and check the MEN link is connected.
12 All labels fitted and numbered correctly. []

13 LV lead connections to the transformer LV bushing are correct as per construction standards (for new connection). []

3. INSULATION RESISTANCE TEST

1. Ensure that the earth resistance has been tested and is acceptable. []
2. Ensure that the high voltage (HV) and low voltage (LV) windings of the transformer are de-energised and disconnected. []
3. Ensure all electrical connections have been disconnected, including MEN/N-E connections. []

<table>
<thead>
<tr>
<th>Test Connection</th>
<th>Test Voltage</th>
<th>Expected Results</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary HV to Tank</td>
<td>2.5 kV</td>
<td>>1,000 MΩ</td>
<td>Ω</td>
</tr>
<tr>
<td>Primary HV to Secondary/LV</td>
<td>1 kV</td>
<td>>100 MΩ</td>
<td>Ω</td>
</tr>
<tr>
<td>Secondary/LV to Tank</td>
<td>1 kV</td>
<td>>100 MΩ</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Using an insulation resistance tester for a minimum of 1 minute for a stable reading test the following: (Short circuit all winding terminals of the source of the same voltage level together.)

Confirm transformer has been discharged after each test. []

4. CABLE RECONNECTION

1. Reconnect phase cables, tighten bolts with recommended torque stated below. []
2. Reconnect neutral cables, tighten bolts with recommended torque stated below. []
3. Reconnect neutral-to-earth links, tighten bolts with recommended torque stated below. []

Suggested bolt torques:
M10 stainless steel bolts: 38 Nm
M12 stainless steel bolts: 66 Nm
M14 stainless steel bolts: 106 Nm
M16 stainless steel bolts: 162 Nm
5. ENERGISATION OF TRANSFORMER WITHOUT LOAD

NOTE Highest risk of failure of a transformer is at energisation – ensure escape plan in place and JRA reflects potential hazard.

<table>
<thead>
<tr>
<th>Test Connection</th>
<th>Allowed Range</th>
<th>Test Results</th>
<th>Test Connection</th>
<th>Allowed Range</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red to neutral</td>
<td>226 – 254 V</td>
<td>V</td>
<td>Red to white</td>
<td>390 – 440 V</td>
<td>V</td>
</tr>
<tr>
<td>White to neutral</td>
<td>V</td>
<td>White to blue</td>
<td>V</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Blue to neutral</td>
<td>V</td>
<td>Blue to red</td>
<td>V</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Phase rotation (123 or ABC or RWB)

6. PHASING TEST

Conduct a phasing test at the open points of the LV network, where the LV supply is coming from another transformer.

Conduct the phasing test under switching schedules on points of the LV network where the potential of the energised transformer can be matched with the potential of another energised transformer. This test ensures that the interconnections of transformers are made or can be made for operational purposes.

- If the LV conductors are energised from an interconnected transformer, conduct the phasing test at the new transformer’s LV disconnector or fuse box.
- If the LV conductors are not energised, proceed to section 6 and conduct the phasing test on normally open points where it can be interconnected from another transformer.
- When erecting a new or reconstructed LV apparatus, conform to the Horizon Power practices for the construction of distribution overhead lines. Phase out at an existing LV point, if possible. Phase out any newly fitted LV disconnectors and check them for sound operation.
7. ENERGISATION OF THE NETWORK WITH LOAD

Carry out the LV switching program and return the LV network to its original operating configuration. Connect the LV transformer to the LV network. Conduct a voltage and phase rotation test on the LV once the transformer is energised.

<table>
<thead>
<tr>
<th>Test Connection</th>
<th>Allowed Range</th>
<th>Test Results</th>
<th>Test Connection</th>
<th>Allowed Range</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red to neutral</td>
<td>226 – 254 V</td>
<td>V</td>
<td>Red to white</td>
<td>390 – 440 V</td>
<td>V</td>
</tr>
<tr>
<td>White to neutral</td>
<td></td>
<td>V</td>
<td>White to blue</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Blue to neutral</td>
<td></td>
<td>V</td>
<td>Blue to red</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Conduct a service connection test on all installations where the service connections have been disturbed.

8. OPERATIONAL HANOVER

The commissioning officer must ensure that all checks are completed and the test results comply with the minimum standards.

I hereby certify that all sections have been completed with satisfactory results and transfer responsibility to the network operating authority. This equipment is ready to be SAFELY energised.

Commissioning Officer: ___________________________ Pay Number: ___________________________
Signature: ___________________________ Date: DD/MM/YY Time: HH:MM

1. Ensure the work area is left tidy with no hazards to the public.
2. Hand over responsibility to the operating authority
3. Return this sheet to the project/working file as a record of commissioning and as a document required for the Handover Certificate.

IMPORTANT: PLEASE ATTACH AS-BUILT DRAWINGS AND DATASHEETS TO THIS SHEET AND SEND TO RELEVANT ASSET MANAGER